
New perspective in the theory of second-order stochastic processes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 5289

(http://iopscience.iop.org/0305-4470/30/15/015)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 5289–5298. Printed in the UK PII: S0305-4470(97)80287-9

New perspective in the theory of second-order stochastic
processes

J Heinrichs
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Abstract. Starting from Langevin equations, we derive Fokker–Planck-like equations (FPLEs)
for the joint distribution of displacements and velocities,p(x, v, t), for a particle in a Gaussian
random force field, firstly for the inertial process (i.e. in the absence of a frictional force) with
a time correlated force, and secondly, for the Brownian motion with a white-noise force. From
two different forms of the Langevin equation as coupled or decoupled first-order equations, we
obtain two different forms of FPLEs for each one of these processes. In the inertial case one of
the FPLEs reduces to an equation studied earlier by the author, while the other coincides with
the equation obtained recently by Drory from an involved time discretization. In the Brownian
motion case one of the FPLEs coincides with the free-particle Kramers equation obtained from
the Fokker–Planck formalism for Markov processes. For each one of these processes the exactly
determined initial value solutions of the two FPLEs are found to coincide. It follows, in
particular, that the Markovian character ofp(x, v, t) for the Brownian motion is respected,
regardless of which FPLE is used for defining it. Furthermore, for each process the two FPLEs
lead to the same diffusion-like equation for the marginal distribution of displacements. The
latter have been used elsewhere for studying first passage times, as well as survival probabilities
in the presence of traps.

1. Introduction

The most common example of a second-order stochastic process is provided by the Langevin
equation for a Brownian particle,

ẍ = −γ ẋ + 1

m
f (t) (1)

wheremγ is the friction coefficient andf (t) is a fluctuating Gaussian inertial force. In
discussing Brownian motion we restrict ourselves in the following to the usual white-noise
case, i.e.

〈f (t)f (t ′)〉 = f 2
0 δ(t − t ′) 〈f (t)〉 = 0 (2)

where the displacementx(t) − x̄ from a deterministic mean position̄x is Markovian for
largeγ , as is well known.

The case whereγ = 0 describes a different, non-Markovian second-order process,

ẍ = 1

m
f (t) (3)

which is referred to as the inertial process. In this case we shall assumef (t) to be a
correlated Gaussian noise of Ornstein–Uhlenbeck (OU) type:

〈f (t)f (t ′)〉 = f 2
0 h(t − t ′) (4)

h(t − t ′) = (2τ)−1 exp(−|t − t ′|/τ) (5)
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which reduces to (2) for vanishing correlation time,τ → 0.
Among various applications of the process (3) we recall its recent use for modelling

reaction–diffusion processes in an inertial force dominated regime [1]. More generally,
however, there are many examples of second-order stochastic processes in physics,
chemistry and engineering (e.g. control, filtering communications) of which the processes
(1) and (3) may be regarded as prototypes.

Detailed theoretical studies of the inertial process with a finiteτ have appeared in the
last few years. In a paper [2], hereafter referred to as I, the author presented explicit results
for the joint probability distribution,p(x, v, t), of displacements and velocities(v = ẋ), and
for the marginal distributions,p(x, t), p(v, t), for this process. Our detailed expressions
for the distributions were restricted to the short(t � τ)- and long time(t � τ)-limits,
respectively. Analogous studies have also been performed for dichotomous noise [3], and
for arbitrary Gaussian noise, with emphasis on anomalous diffusion and fractal behaviour
[4]. Finally, first passage times and survival probabilities in the presence of additional
trapping centres have been discussed for the inertial diffusion process (1) with OU noise
[5].

In an interesting recent paper [6], Drory presented a general formalism for higher-order
stochastic processes, which he described explicitly in the context of second-order processes.
His approach is based on discretizing such a process by breaking-up the continuous time
variable into a finite number of steps. By applying his analysis to the inertial process (3)
with a Gaussian OU noise (4)–(5), Drory obtained the exact joint distributionp(x, v, t)

for a particle which started from an arbitrary pointx0, with an arbitrary velocityv0,
at t = 0. Moreover, he showed that this distribution is the initial value solution, with
p(x, v,0) = δ(x − x0)δ(v − v0), (also called the fundamental solution) of a new Fokker–
Planck-like equation (FPLE)† which he derived from his discretization procedure, as well as
of the quite different FPLE obtained in I. From this it follows that the FPLE derived in I and
in [6] for the process (3)–(5) are equally acceptable for describing the temporal evolution of
p(x, v, t) from the initial distributionδ(x − x0)δ(v − v0). This is no longer expected to be
so in cases where boundary conditions are added to the initial value condition, as required,
for example, when studying first passage times (and survival probabilities in the presence
of traps) for the process (3) in the two-variable(x, v) space [7]. Indeed the solutions of
the two FPLEs for this mixed initial value–boundary value problem [8] will generally be
different [6]. However, this statement adapted from [6] must be taken with caution, since
its verification, by obtaining boundary value solutions from a fundamental solution of the
FPLE, is notoriously difficult.

In view of the widespread use of FPLEs in many different areas, the findings of Drory
about their non-uniqueness for higher-order stochastic processes are at first surprising. In
particular, because of the possible consequences of this fact for boundary value problems of
current interest, it is important to clarify its origin and to examine whether the unpleasant
non-uniqueness also affects FPLEs for marginal distributions or whether, on the contrary, it
is restricted to the FPLE for the joint distribution of the random variables. For this purpose
we reconsider the Gaussian inertial process in section 2 to show that the existence of the
two distinct forms of the FPLE forp(x, v, t) arise from two different ways of expressing

† In the following we use the term FPLEs for evolution equations for joint distributions of displacements and
velocities (and for the corresponding marginal distributions) which are derived directly from Langevin dynamical
equations for Gaussian processes, without further considerations about their Markovian or non-Markovian nature.
In particular, evolution equations for Markov processes obtained in this way will also be referred to as FPLEs.
Thus, in section 4, the familiar Fokker–Planck equation (FPE) for Brownian motion is obtained as a special form
of FPLE.
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the Langevin equation (3) in terms of the first-order equations forx and forv = ẋ. We also
show that the two FPLEs reduce to a common diffusion-like equation forp(x, t), which
is related to the unique way of casting (3) in the form of a first-order processx(t). This
diffusion-like equation thus provides a reliable starting point for studying first passage times
and survival probabilities for the inertial process [5].

Alternatively, one would like to know to what extent the detailed conclusions derived
by Drory for the inertial process are similar for other processes and, in particular, for its
close relative, the ubiquitous Brownian motion process, described by (1) and (2). The
Brownian motion process is studied in section 3 by a procedure similar to that used in
section 2. This analysis is of interest partly because the Brownian process is Markovian (at
least for largeγ ), unlike the inertial process for whichx(t) is non-Markovian even for white
noise. Therefore, one of the two FPLEs obtained for this case is expected to reduce to the
familiar Fokker–Planck equation (FPE) for free Brownian motion, the so-called Kramers
equation. As in the case of the inertial process, we present a complete discussion of initial
value solutions of the two FPLEs and of the corresponding diffusion-like equations for the
marginal distributionp(x, t) for Brownian motion. In section 4 the results of the previous
sections are analysed in the light of the non-Markovian and Markovian characters of the
inertial and Brownian motion processes, respectively.

2. The inertial process

Following I, the probability densityp(x, v, t) of a displacementx and a velocityv of a
particle described by (3) is given by the noise-averaged expression

p(x, v, t) = 〈δ(x − x(t))δ(v − v(t))〉 (6)

wherex(t) andv(t) are the solutions of the coupled stochastic equations

ẋ(t) = v(t) (7a)

v̇(t) = 1

m
f (t) (7b)

which may be viewed as defining a velocity at each point of the two-dimensional(x, v)

phase space [9]. In order to derive FPLEs for an arbitrary Gaussian noise we differentiate
both sides of (6) with respect to time, obtaining (withδ(u−u(t)) ≡ δ(x−x(t))δ(v−v(t))),

∂p(x, v, t)

∂t
= − ∂

∂x

〈
∂x(t)

∂t
δ(u− u(t))

〉
− ∂

∂v

〈
∂v(t)

∂t
δ(u− u(t))

〉
. (8)

We now observe that there are two distinct ways of proceeding from this equation. First,
one may use for the phase-space velocities the original expressions (7) describing coupled
first-order processes. This procedure, which was used in I, is analogous to that followed in
the general derivation of FPEs fornth-order stochastic processes based on Van Kampen’s
lemma [9] and leads to [2]

∂p(x, v, t)

∂t
= −v ∂p

∂x
− 1

m

∂

∂v
〈f (t)δ(u− u(t))〉. (9)

Another procedure consists in substituting in (8) the integral forms for the ‘velocities’ (with
v0 the initial velocity), in terms of the random force, namely

ẋ(t) = v0+ 1

m

∫ t

0
dt ′′f (t ′′) (10a)

v̇(t) = 1

m
f (t) (10b)
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which amounts to definingdistinct first-order processesx(t) andv(t). In this case (8) takes
the form

∂p(x, v, t)

∂t
= − 1

m

∂

∂x

∫ t

0
dt ′′〈f (t ′′)δ(u− u(t))〉

− 1

m

∂

∂v
〈f (t)δ(u− u(t))〉 − v0

∂p(x, v, t)

∂x
. (11)

Sinceδ(u − u(t)) is a functional of the Gaussian random noise at timest ′ prior to t , the
averages appearing in (9) and (11) are given by Novikov’s formula [10]

〈f (t ′′)δ(u− u(t))〉 =
∫ t

0
dt ′ 〈f (t ′′)f (t ′)〉

〈
δ[δ(u− u(t))]

δf (t ′)

〉
(12)

where the functional derivative obtained from the explicit solution of (7a, b) is

δ[δ(u− u(t))]
δf (t ′)

= − 1

m

[
(t − t ′) ∂

∂x
+ ∂

∂v

]
δ(u− u(t)). (13)

By substituting (12) and (13) into (9) and specializing to OU noise (5) one thus obtains the
FPLE studied in I, namely

∂p(x, v, t)

∂t
= −v ∂p

∂x
− b(t) ∂

2p

∂x∂v
+ a(t)∂

2p

∂v2
(14)

where

a(t) = η(1− e−(t/τ )) (15a)

b(t) = η[(t + τ)e−(t/τ ) − τ ] η = f 2
0

2m2
. (15b)

On the other hand, from (11) we obtain in a similar fashion, for arbitrary Gaussian noise,

m2∂p(x, v, t)

∂t
= −v0

∂p

∂x
+
∫ t

0
dt ′
∫ t

0
dt ′′〈f (t ′′)f (t ′)〉

[
(t − t ′) ∂

2

∂x2
+ ∂2

∂x∂v

]
p

+
∫ t

0
dt ′〈f (t)f (t ′)〉

[
(t − t ′) ∂2

∂x∂v
+ ∂2

∂v2

]
p. (16)

In the special case of an OU correlation (5) for the noise this equation reduces to

∂p(x, v, t)

∂t
= −v0

∂p

∂x
+ d(t)∂

2p

∂x2
+ c(t) ∂

2p

∂x∂v
+ a(t)∂

2p

∂v2
(17)

where

c(t) = η[t (2− e−(t/τ ))− τ(1− e−(t/τ ))] (18a)

d(t) = η[t2− tτ (1− e−(t/τ ))]. (18b)

Equation (17) coincides with equation (5.3) of Drory’s paper [6]. Now, Drory has shown
that the two FPLEs (14) and (17) have the same initial value or fundamental solution (i.e.
the solution reducing toδ(x − x0)δ(v − v0) at t = 0) given by an exact expression which
he has derived independently, i.e. without using a FPLE. This solution is

p(x, v, t) = 1

4π
√
(αγ − β2)

exp

{
− 1

4(αγ − β2)
[γ (x − x0− v0t)

2

−2β(x − x0− v0t)(v − v0)+ α(v − v0)
2]

}
(19)
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where the quantities

α = η
[
t3

3
− 1

2
t2τ + τ 3− τ 2(t + τ)e−(t/τ )

]
(20a)

β = η

2
[t2− tτ (1− e−(t/τ ))] (20b)

γ = η[t − τ(1− e−(t/τ ))] (20c)

are related toa, b, c, d as follows:

a(t) = dγ

dt
b(t) = 2

(
dβ

dt
− t dγ

dt

)
c(t) = 2

dβ

dt
d(t) = dα

dt
= 2β.

The expression (19) gives the distribution of the location and of the velocity of the particle
about instantaneous mean values,x0 + v0t andv0. These results show that the two FPLEs
(14) and (17), which follow from a well defined procedure, are equally acceptable evolution
equations forp(x, v, t) since they have a common initial value solution with an obvious
physical meaning. The physical relevance of the FLPE (17) is further emphasized by the
following discussion.

A formal difference between the FPLEs (14) and (17) is revealed by integrating both
sides over velocities to obtain an equation for the marginal distribution of displacements,

p(x, t) =
∫ ∞
−∞

dv p(x, v, t).

Assumingp(x, v, t) and its derivatives to be well behaved atx = ±∞ and atv = ±∞,
we thus obtain

∂p(x, t)

∂t
= − ∂

∂x

∫ ∞
−∞

dv vp(x, v, t) (21)

from (14), and

∂p(x, t)

∂t
= −v0

∂p

∂x
+ d(t)∂

2p

∂x2
(22)

from (17), whered(t) defined by (18b) is the time-dependent diffusion coefficient giving
the mean-squared displacement [11]

〈x2(t)〉 − (x0+ v0t)
2 = 2

∫ t

0
d(t ′) dt ′. (23)

It is seen that while (21) is just the continuity equation for the probability density, the
diffusion-like (or Smoluchovski-like) equation (22) expresses probability conservation in
terms of the contributions of drift- and diffusion-probability currents. However, the exact
solution (19) readily permits us to reduce (21) to the form of the closed equation (22) for
p(x, t). This shows that (14) and (17) yield a unique closed equation forp(x, t), the (initial
value) solution of which, obtained by integrating (19) over velocities, is

p(x, t) = 1

2
√
πα(t)

exp

(
− 1

4α(t)
(x − x0− v0t)

2

)
. (24)

The uniqueness of the FPLE (22) forp(x, t) is related to the unique way of rewriting
the Langevin equation (3) in the form of a first-order process, namely (10a). Indeed, the
marginal distribution is defined in terms of the solution of (10a) by

p(x, t) = 〈δ(x − x(t))〉. (25)
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The FPLE forp(x, t) may be obtained by following the same steps as above, differentiating
(25) with respect tot , inserting (10a) and, finally, performing the average of the expression
for ∂p(x, t)/∂t , using the form of (12) and (13) when onlyx is present as a variable. This
yields

∂p(x, t)

∂t
= −v0

∂p

∂x
+ 1

m2

∫ t

0
dt ′ (t − t ′)

∫ t

0
dt ′′ 〈f (t ′′)f (t ′)〉∂

2p

∂x2

for Gaussian noise with an arbitrary correlation〈f (t)f (t ′)〉 ≡ γ (t, t ′). In the special case
of OU noise (5) this equation reduces to the generalized diffusion equation (22).

Finally, we observe [6] that while the initial value—or so called fundamental solutions
of (14) and (17) coincide, the mixed initial value–boundary value solutions [8] of these
equations, when additional boundary conditions are imposed at a timet , are expected to
be different (see, section 1). The diffusion-like equation (22) has been applied previously
to the study of first passage times and to the related problem of survival probability in
the presence of fixed traps [5], using the first passage condition for first-order stochastic
processes [5, 12].

3. The Brownian motion process

As in the inertial case, the Langevin equation (1) for Brownian motion may be written in
two different ways in the form of first-order equations, namely

ẋ = v (26a)

v̇ = −γ v + 1

m
f (t) (26b)

and

ẋ = v0e−γ t + 1

m

∫ t

0
dt ′ e−γ (t−t

′)f (t ′) (27a)

v̇ = −γ v + 1

m
f (t) (27b)

where the right-hand side of (27a) is the general solution of (27b) in terms of an initial
velocity v0.

The FPLE describing the coupled second-order process (26a, b) is readily found by
inserting these expressions in (8) and using the Novikov identity (12), with〈f (t)f (t ′)〉
given by (2) and

δ[δ(u− u(t))]
δf (t ′)

= − 1

m
e−γ (t−t

′)
[
(t − t ′) ∂

∂x
+ ∂

∂v

]
δ(u− u(t)). (28)

This yields(η = f 2
0 /2m

2)

∂p(x, v, t)

∂t
= −v ∂p

∂x
+ γ ∂

∂v
(vp)+ η∂

2p

∂v2
(29)

which is nothing but the familiar FPE, also called the free-particle Kramers equation, for
the distributionp(x, v, t) of Brownian motion (with the usual identificationη = γ kT /m

resulting from the energy equipartition law).
On the other hand, by substituting (27a, b) in (8) we get

∂p(x, v, t)

∂t
= −u0(t)

∂p

∂x
+ γ ∂

∂v
(vp)
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− ∂

∂x

∫ t

0
dt ′′ e−γ (t−t

′′)〈f (t ′′)δ(u− u(t))〉 − ∂

∂v
〈f (t)δ(u− u(t))〉 (30)

where

u0(t) = v0e−γ t (31)

denotes the instantaneous systematic velocity which is progressively damped out from its
initial value, due to the frictional force. Using the Novikov formula (12) for the averages
over the white noise in (30), where we now have (withθ(x) the step function)

δ[δ(u− u(t))]
δf (t ′)

= 1

m

[
1

γ
(e−γ (t−t

′) − 1)
∂

∂x
− e−γ (t−t

′)θ(t − t ′) ∂
∂v

]
δ(u− u(t)) (32)

we finally obtain the new FPLE

∂p(x, v, t)

∂t
= −u0(t)

∂p

∂x
+ γ ∂

∂v
(vp)+ η∂

2p

∂v2
− r(t)∂

2p

∂x2
+ 2q(t)

∂2p

∂x∂v
(33)

where

q(t) = η

2γ
(1− e−2γ t ) (34a)

r(t) = − η

γ 2
(1− e−γ t )2. (34b)

The next step of our discussion is to find the explicit initial value solution of the Kramers
equation (29) and to show that this solution is also the initial value solution of our new
FPLE (33). To this end, we define the double Fourier transform,p̃(ξ, ν, t), of the joint
distributionp(x, v, t):

p̃(ξ, ν, t) =
∫ ∞
−∞

dx
∫ ∞
−∞

dv e−iξx−iνvp(x, v, t) (35)

and by Fourier transforming (29) we get

∂p̃(ξ, ν, t)

∂t
= (ξ − γ ν)∂p̃

∂ν
− ην2p̃. (36)

By expressing the solution of (36) in the form̃p(ξ, ν, t) = p̃0(ξ, ν)q̃(ξ, ν, t), wherep̃0(ξ, ν)

is the stationary solution given by

p̃0(ξ, ν) = θ−(η/γ 3)ξ2
e−(η/2γ

3)θ(θ+4ξ) θ = γ ν − ξ (37)

one finds that̃q obeys the homogeneous first-order equation

∂q̃

∂t
= −(γ ν − ξ)∂q̃

∂ν
(38)

whose solution is

q̃(ξ, ν, t) = φ[(γ ν − ξ)e−γ t ]
where φ(z) is an arbitrary function ofz. From the initial conditionp(x, v,0) =
δ(x − x0)δ(v − v0), i.e. p̃(ξ, ν,0) = exp(−iξx0 − iνv0) one then obtainsφ(γ ν − ξ) =
[p̃0(ξ, ν)]−1 exp(−iξx0− iνv0). This finally leads to an expression forp̃(ξ, ν, t) which may
be reduced to the form

p̃(ξ, ν, t) = e−iu0ν−iw0ξ−qν2+rξν−sξ2
(39)
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whereu0, q andr are given by (31) and (34a, b), and

s(t) = ηt

γ 2
− η

2γ 3
(1− e−γ t )(3− e−γ t ) (40)

w0(t) = x0+ v0

γ
(1− e−γ t ). (41)

Here w0(t) is the instantaneous systematic displacement which saturates at the value
x0+ v0/γ after time intervals long compared to the frictional relaxation timeγ−1. Finally,
the exact initial value solution of (29) given by the inverse transform of (39) is

p(x, v, t) = 1

2π
√

4qs − r2

× exp

{
− 1

4qs − r2
[q(x − w0)

2+ r(x − w0)(v − u0)+ s(v − u0)
2]

}
. (42)

Now, it is not difficult to verify that (42) is also the exact initial value solution of the new
FPLE (33). This verification is simplified by noting the following interrelations between
the functionsq, r ands

dq

dt
= η − 2γ q (43a)

dr

dt
= −γ r − 2q (43b)

ds

dt
= −r (43c)

d0

dt
= −2γ0 + 4ηs 0 = 4qs − r2. (43d)

We have thus shown that the Kramers equation (29) and the new FPLE (33), obtained as
a direct consequence of the Langevin equations (1) in the form (27a, b), describe the same
physics via their exact initial value solution (42). In particular, it follows that (33) fully
incorporates the Markovian character of the Brownian motion process for largeγ , via the
explicit solution (42).

As in the case of the inertial process considered in section 2, we may obtain equations
for the marginal distribution of displacements,p(x, t), by integrating (29) and (33) over
velocities. This yields, respectively, the continuity equation analogous to (21) and the closed
diffusion-like equation

∂p(x, t)

∂t
= −u0(t)

∂p

∂x
− r(t)∂

2p

∂x2
(44)

with a generalized diffusion coefficientD(t) = −r(t), which defines the mean-squared
displacement

〈x2(t)〉 − w2
0(t) = −2

∫ t

0
r(t ′) dt ′

= 2η

γ 2

[
t − 1

2γ
(3− 4e−γ t + e−2γ t )

]
. (45)

The correctness of this result is readily confirmed by direct evaluation of the white-noise
average ofx2(t) obtained from (27a). Also, with the help of (42), the equivalence of
the continuity equation of the form (21) and of the diffusion-like equation (44) is readily
demonstrated. The exact solution of (44) obtained by integrating (42) over velocities is

p(x, t) = 1

2
√
πs(t)

exp

[
− 1

4s(t)
(x − w0(t))

2

]
. (46)
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Again, the diffusion-like equation (44) may be derived directly from the definition (25)
of p(x, t) in terms of the solutionx(t) of the first-order Langevin equation (27a). The
uniqueness of (44) is thus related to the unique way of expressing the Langevin equation
(1) in the form of a closed first-order process for the particle’s displacements.

As for the inertial case, we remark that, while the initial value solutions of the
Kramers equation (29) and the FPLE (33) coincide, their mixed initial value–boundary
value solutions, when boundary conditions at a finitet are added to the initial values, are
generally expected to be different. Again, the generalized diffusion equation (44) allows
one to study first passage times (as well as survival probabilities), using the familiar first
passage condition [12] for first-order processes such as (27a).

4. Concluding remarks

Conventional treatments of stochastic processes [7, 9, 12] introduce a clear distinction
between Markovian and non-Markovian processes. This is important not only because of
the relative simplicity of the Markovian processes but also because these processes are of
fundamental importance in applications, for example, in physics and chemistry. Markovian
processes are characterized by the absence of memory; given the value obtained for a
random variable at a timet , its evolution at later times depends only on the value at the
time t , being independent of its value at times prior tot . For a Gaussian stochastic process,
y(t), the Markovian or non-Markovian character may be directly inferred from the solution
of the Langevin equation, which determines the form of the correlation coefficientρ(t, t ′)
defined by

ρ(t, t ′) = 〈y(t)y(t ′)〉
(〈y2(t)〉〈y2(t ′)〉)1/2 (47)

where the angular brackets indicate averages over the random noise. Indeed, a necessary
and sufficient condition for a Gaussian process to be Markovian is thatρ(t, t ′) verifies the
relation [14]

ρ(t, t ′) = ρ(t, t ′′)ρ(t ′′, t ′) t > t ′′ > t ′. (48)

Now, in the Brownian motion case it follows from (26a, b) that, for largeγ (γ t � 1),

v(t) ' 1

γm
f (t) x(t) ' x0+ 1

γm

∫ t

0
dt ′ f (t ′). (49)

From (47) and (48) and (2) it then follows that bothv(t) andx(t) are Markovian processes
for γ t � 1. (Note that by using the explicit solution (27a) for the velocity one may verify
that the latter is actually Markovian for all time scales.) On the other hand, one readily
finds that the inertial process (10a), namely

x(t) = x0+ v0t + 1

m

∫ t

0
dt ′
∫ t ′

0
dt ′′ f (t ′′)

is non-Markovian (i.e. (48) is violated) for white noise as well as for OU noise (the OU
noise itself is, however, Markovian, as is well known).

It follows from the above discussion that the FPLEs obtained directly from the Langevin
equations fully incorporate the information about the Markovian or the non-Markovian
nature of the considered processes. In the Brownian motion case a direct confirmation of
this is provided by the fact that one of the FPLEs is the free-particle Kramers equation (29)
obtained from the Fokker–Planck formalism for Markov processes. Furthermore, the other
FPLE (33) has the same initial value solution as the Kramers equation and, is, therefore,
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also compatible with the Markovian nature of Brownian motion. We recall that, in contrast
to the treatments of sections 3 and 4, the Fokker–Planck formalism is not primarily based
on Langevin equations (which are used only to find the actual values of the coefficients
in the FPE), but rather on the use of the Markovian property embodied in the Chapman–
Kolmogorov equation (or its master equation version). On the other hand, we recall that
while the discussion of the preceding paragraph emphasizes the distinction between the
inertial- and the Brownian-motion processes from the point of view of the Markovian
and/or the non-Markovian nature of the individual variablesx(t) andv(t), this information
does not fully characterize the two-variable process, as is well known [7, 14]. Thus for
Brownian motion, as well as for inertial motion withτ → 0, the process [x(t), v(t)] is
always Markovian.

It is clear that the treatments of sections 2 and 3 leading to new FPLEs for the inertial-
and Brownian-motion processes may be generalized in the case of annth-order stochastic
processu(t) defined by a linear Langevin equation ofnth-order. Such an equation may
be rewritten either in the form ofn coupled linear first-order equations forn stochastic
variablesu1 = u(t), u2 = u̇(t), u3 = ü(t), . . . , un = dn−1u(t)/dtn−1, or as a collection
of n decoupled first-order processes expressed in terms of multiple time integrals of the
noise f (t). Alternatively thenth-order Langevin equation may also be cast into mixed
forms involving coupled first-order equations for subsets of then variablesu1, u2, . . . , un,
together with Langevin equations for independent effective first-order processes for the
remaining variables. To each different expression of thenth-order Langevin equation in the
form of first-order differential equations there corresponds an FPLE of a particular form.
As in the cases of second-order processes of sections 2 and 3, these different FPLEs are
expected to have a common initial value solution for the joint distribution of then random
variablesu1, u2, . . . , un.
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